# Radial Implications of the Unified Field (Kobo eBook)

### Description

*If you use quantum mechanics, teach quantum mechanics, or study chemistry, physics, or mathematics at any level youâ€™ll be fascinated by the classical discoveries that are revealed in Radial Implications of the Unified Field.*

My book, Radial Implications of the Unified Field, was inspired by an equation that I derived for the separation of two similar steroidal materials by solvent extraction over fifty years ago. I defined a variable alpha that must always be less than unity. This variable a, which varies as the ratio (N-35) to (N-28), so that when N increases then a approaches unity. From this I derived for the radius, a new variable set, R = -10 a Ln (a) divided by Square root of (N+6). This defines the solution sets of orbital matrices which apply to all of the elements. A variable r in the Associated Legendre Equation, another source, which was supposedly a radius of the SchrĂ¶dinger equation had to be divided into my variable in a to obtain all true radii. I first used it to find the .529 that replicates the radius of hydrogen. Because time evolution was zero I converted the vector Laplacian to the Poisson electron density. The Unified Field was inherent in the Rydberg equation; but not using kilogram test particles. You must use unit electron masses.